B.A./B.Sc. THIRD YEAR MATHEMATICS SYLLABUS

SEMESTER-IV, PAPER-V

MODEL QUESTION PAPER

LINEAR ALGEBRA

Time: 3 Hours Max. Marks: 75

PART - A

I. Answer any <u>FIVE</u> of the following Questions:

5 X 5 = 25 Marks

- 1. Prove that intersection of two subspaces is again a subspace.
- 2. Show that the system of vector (1,3,2),(1,-7,-8),(2,1,-1) of $V_3(R)$ is Linearly dependent.
- 3. State and prove "Invariance theorem".
- **4.** Show that the vectors (1,1,2), (1,2,5), (5,3,4) of $R^3(R)$ do not form a basis set of $R^3(R)$.
- 5. Show that the mapping $T:V_3(R) \to V_2(R)$ is defined by T:(x,y,z)=(x-y,x-z) is a Linear Transformation.
- **6.** $T:V_3(R) \rightarrow V_2(R)$ and $H:V_3(R) \rightarrow V_2(R)$ be two Linear Transformations T(x,y,z) = (x-y,y+z) and H(x,y,z) = (2x,y-3) Find (i) H+T (ii) aH.
- 7. Obtain the rank of the matrix $A = \begin{bmatrix} -1 & 2 & 0 \\ 3 & 7 & 1 \\ 5 & 9 & 3 \end{bmatrix}$.
- 8. Show that the equations x + y + z 3 = 0, 3x 5y + 2z 8 = 0, 5x 3y + 4z 14 = 0 are consistent.
- 9. State and prove Triangle Inequality.
- **10.** If α, β are two vectors in Euclidean space V(R) such that $\|\alpha\| = \|\beta\|$ prove that $(\alpha + \beta, \alpha \beta) = 0$.

PART - B

Answer any <u>FIVE</u> of the following Questions. Marks

 $5 \times 10 = 50$

- 11. If V(F) be a vector space. $\omega \subseteq V$. Prove that the necessary and sufficient conditions for ω to be a subspace of V are
 - (i) $\alpha \in \omega, \beta \in \omega \Rightarrow \alpha \beta \in \omega$
 - (ii) $a \in F, \alpha \in \omega \Rightarrow a\alpha \in \omega$.
- 12. If show that are the sub sets of a vector space v(F) then prove that $L(S \cup T) = L(S) + L(T)$.
- **13.** State and prove Basis Existence theorem.
- **14.** Find the co-coordinators of (2,3,4,-1) with respect to the basis of $V_4(R)$ B= $\{(1,1,1,2),(1,-1,0,0),(0,0,1,1),(0,1,0,0)\}$
- **15.** Find T(x, y, z) where $T: \mathbb{R}^3 \to \mathbb{R}$ is defined by T(1,1,1) = 3, T(0,1,-2) = 1, T(0,0,1) = -2.
- **16.** Define Null space. Prove that Null space N(T) is subspace of U(F) where $T: U \to V$ is a Linear Transformation.
- 17. If $A = \begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$ verify cayley Hamilton theorem. Hence find A^{-1} .
- **18.** Find the characteristic roots and vectors to the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$.
- **19.** State and prove parallelogram Law.
- **20.** If α, β and two vectors in an I.P.S. then prove that α, β are Linear Independent iff $|(\alpha, \beta)| = ||\alpha|| ||\beta||$.