B.A./B.Sc. THIRD YEAR MATHEMATICS SYLLABUS SEMESTER-IV,PAPER-V MODEL QUESTION PAPER
 LINEAR ALGEBRA

Time: 3 Hours
Max. Marks : 75

PART - A

I. Answer any FIVE of the following Questions :

5 X 5 = 25 Marks

1. Prove that intersection of two subspaces is again a subspace.
2. Show that the system of vector $(1,3,2),(1,-7,-8),(2,1,-1)$ of $V_{3}(R)$ is Linearly dependent.
3. State and prove "Invariance theorem".
4. Show that the vectors $(1,1,2),(1,2,5),(5,3,4)$ of $R^{3}(R)$ do not form a basis set of $R^{3}(R)$.
5. Show that the mapping $T: V_{3}(R) \rightarrow V_{2}(R)$ is defined by $T:(x, y, z)=(x-y, x-z)$ is a Linear Transformation.
6. $T: V_{3}(R) \rightarrow V_{2}(R)$ and $H: V_{3}(R) \rightarrow V_{2}(R)$ be two Linear Transformations $T(x, y, z)=(x-y, y+z)$ and $H(x, y, z)=(2 x, y-3)$ Find (i) H+T (ii) aH .
7. Obtain the rank of the matrix $A=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 3 & 7 & 1 \\ 5 & 9 & 3\end{array}\right]$.
8. Show that the equations $x+y+z-3=0,3 x-5 y+2 z-8=0,5 x-3 y+4 z-14=0$ are consistent.
9. State and prove Triangle Inequality.
10. If α, β are two vectors in Euclidean space $V(R)$ such that $\|\alpha\|=\|\beta\|$ prove that $(\alpha+\beta, \alpha-\beta)=0$.

PART - B

Answer any FIVE of the following Questions. $5 \times 10=50$

Marks

11. If $V(F)$ be a vector space. $\omega \subseteq V$. Prove that the necessary and sufficient conditions for ω to be a subspace of V are
(i) $\alpha \in \omega, \beta \in \omega \Rightarrow \alpha-\beta \in \omega$
(ii) $a \in F, \alpha \in \omega \Rightarrow a \alpha \in \omega$.
12. If show that are the sub sets of a vector space $v(F)$ then prove that $L(S \cup T)=L(S)+L(T)$.
13. State and prove Basis Existence theorem.
14. Find the co-coordinators of $(2,3,4,-1)$ with respect to the basis of $V_{4}(R)$ $\mathrm{B}=\{(1,1,1,2),(1,-1,0,0),(0,0,1,1),(0,1,0,0)\}$
15. Find $T(x, y, z)$ where $T: R^{3} \rightarrow R$ is defined by $T(1,1,1)=3$, $T(0,1,-2)=1, T(0,0,1)=-2$.
16. Define Null space. Prove that Null space $N(T)$ is subspace of $U(F)$ where $T: U \rightarrow V$ is a Linear Transformation.
17. If $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2\end{array}\right]$ verify cayley - Hamilton theorem. Hence find A^{-1}.
18. Find the characteristic roots and vectors to the matrix $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$.
19. State and prove parallelogram Law.
20. If α, β and two vectors in an I.P.S. then prove that α, β are Linear Independent iff $|(\alpha, \beta)|=\|\alpha\|\|\beta\|$.
